Lecture 2:
GIS Data Sources, Data Types and Representation

GE 118: INTRODUCTION TO GIS
Engr. Meriam M. Santillan
Caraga State University
Geographic Data in GIS

- Can be obtained from various sources in different formats
- Can be inputted into a GIS using different methods
Some Sources of Data for GIS

- Maps
- Census and Survey Data
- Aerial Photographs
- Satellite Images
- Ground/Land Survey Data
- GPS Data
Census and Survey Data

- May be spatial in character if each item has a spatial reference, allowing its location on the Earth to be identified.
- Usually in tabular format.
- Examples: population census, employment data, agricultural census data, marketing data.
Aerial Photographs

- First method of remote sensing
- A ‘snapshot’ of the Earth at a particular instant in time
- May be used as a background or base map for other data in a GIS
 - Provides spatial context and aids in interpretation
- Versatile, relatively inexpensive and detailed source of data for GIS
- Disadvantage: not spatially referenced; should be spatially referenced using other data (ex. Maps, GPS data, Land survey data)
Important Characteristics of Aerial Photos for GIS (Curran 1989)

- Wide availability
- Low cost compared with other remotely sensed images
- Wide area views
- Time-freezing ability
- High spectral and spatial resolution
- Three-dimensional perspective
Satellite Images

- Collected by sensors on board a satellite, which are then relayed to ground stations and then computer-processed to produce images.

- Can be used to detect features not readily apparent to the naked eye (ex. Sedimentation, moisture content, ground temperature variations).

- Processing is needed for data reduction, georeferencing, enhancing, and data integration.

- Examples: Landsat, SPOT, Ikonos, Quickbird, AVHRR.
Advantages of Satellite Images

- Easy to transfer/transport -- always available in digital form
- Specific features can be highlighted by manipulating the displayed wavebands
- Repeated coverage of the Earth – important for temporal analysis and continuous monitoring
- Large coverage area – useful for regional or national mapping applications
- Low cost compared with other data sources
- Ability to acquire current/timely images
- Accurate and complete
- Uniform standards across areas
Ground/Land Surveying Data

- Using tapes, transits, theodolites, total stations, etc.
- Used to collect field data such as coordinates, elevations, and distances
- Data collected are in analog format (written down in paper) which still need to be transformed to digital format for use in GIS
Methods of Data Acquisition

1. Raster Data Acquisition
 - Scanning
 - Photogrammetry
 - Remote sensing

2. Vector Data Acquisition
 - Manual digitizing
 - Computer-assisted digitizing
 - Field surveying
 - GPS surveying

3. Attribute Data Acquisition
 - Keyboard entry
Categories of Geographic Data Acquisition

- Primary – collected through first-hand observation
- Secondary – data collected by another individual or organization; most are published data
Primary Raster and Vector Data

Raster Data
- satellite images
- scanned aerial photographs

Vector Data
- Land survey points
- GPS observation data
Scanning

- Most commonly used method when raster data is required.
- Accuracy depends on the scanner's quality (resolution), quality of the image processing software used to process the scanned data, and quality/complexity of source document.
Manual Digitizing

- Most common method of encoding geographic features from paper maps to vector GIS
- Used when topology of features is important
- May be used for extraction of spatial features from maps and aerial photos
- Uses a *Table Digitizer* which is linked to a computer
Digital Geographic Data

- Numerical representations that describe real-world features and phenomena
- Must be encoded in digital form and organized as a geographic database to be useful to GIS
 - This digital database creates our perception of the real world
Conventional Data vs. Digital Geographic Data

Conventional Data: Paper map
- Static representation
 - Represents a general-purpose snapshot of the real world at a given time only

Digital Geographic Data:
- Dynamic representation
 - Allows a range of functions for storing, processing, analyzing, and visualizing spatial data
 - Has tools that allow users to interact with the data to meet their objectives
What is a Data Model?

- The heart of any GIS
- A way of representing data
- Mathematical construct for representing geographic objects or surfaces as data

A set of constructs for describing and representing selected aspects of the real world in a computer.

Longley, Goodchild, Maguire & Rhind
For example:
• the **vector** data model represents geography as collections of points, lines, and polygons;
• the **raster** data model represent geography as cell matrixes that store numeric values; and
• the **TIN** data model represents geography as sets of contiguous, nonoverlapping triangles
Raster and Vector Data Models
Raster Data Model

- Treats geographic space as populated by one or more spatial phenomena, which vary continuously over space and having no obvious boundaries.

- Best used to represent geographic features that are continuous over a large area (e.g., soil type, vegetation, etc.)

- Uses an array of rectangular cells/pixels/grids to represent real-world objects.

- Each cell is defined by a coordinate location and an attribute that identifies the feature.
 - Similar features are assigned equal attribute values.

- Cell’s linear dimensions defines the *spatial resolution*
Raster Data Model
Raster Data Model
Raster File Formats

BMP (bitmaps) – used by graphics in Microsoft Windows applications; no compression
DIB (Device Independent Bitmaps)
GIF (Graphical Interchange Format) – widely used for images to be used on the World Wide Web
TIFF (Tagged Image File Format) – non-proprietary, system-independent
JPEG (Joint Photographic Experts Group) – primarily for storage of photographic images and for the World Wide Web
GeoTIFF – extension of the TIFF format that contains georeferencing information
PNG (Portable Network Graphics) – patent-free; intended to replace the GIF format
PCX – supported by many image scanners
MrSID (Multi-resolution Seamless Image Database)
GRID – proprietary format used by ESRI in ArcInfo and ArcView GIS
Digital Elevation Model

- A raster-based representation of surface

Southwest Corner of the Morrison Quadrangle, Colorado
Vector Data Model

- Treats geographic space as populated by discrete objects, which have identifiable boundaries or spatial extent.
- Each object in the real-world is represented as either point, line, or polygon features.
- Characterized by the use of sequential points or vertices to define a linear segment, each vertex consisting of an X coordinate and a Y coordinate.
- Useful for representing discrete objects such as roads, buildings, rivers, boundaries, etc.
Types of Vector Data Model

1. Simple data model
2. Topologic data model
Simple (Spaghetti) Data Model

- a one-for-one translation of the analog map
- Features (lines and polygons) may overlap
- No relationships between features
- Generally used where analysis is not important (e.g., Plotting)
- Examples are digitized maps and CAD data
Simple (Spaghetti) Data Model

Advantages:

- Easy to create and store
- Can be retrieved and rendered on screen very quickly
Simple (Spaghetti) Data Model

Disadvantages:

- Spatial analysis (e.g., Shortest path network analysis) cannot be performed easily due to lack of any connectivity relationships.
- Redundant since the boundary segment between two polygons can be stored twice (once for each feature).
- Inflexible since it is difficult to dissolve common boundaries when joining polygons.
- Cannot be used in certain applications such as land management because of overlapping features.
Topological Data Model

- Essentially just a simple data model structured using topologic rules
- Often referred to as an intelligent data structure because spatial relationships between geographic features are easily derived when using them
- The dominant vector data structure currently used in GIS technology
- Most commonly used variants is the arc-node data model
Topological Data Model Components

Point (vertex) – where a line originates or terminates
Node – where a link originates or terminates
Line – a segment between two points (vertices)
Link (or arc or chain) – a connection between two nodes
 – may consist of several lines which are joined at
 points (vertices)
 – can only originate, terminate or be connected at
 nodes
Polygon (area) – composed of links
 – adjacent polygons have only one link between
 them
Elements of Topological Relationship

Connectivity
- Information about linkages among spatial objects
- Keep track of which links are connected at a node

Adjacency
- Information about neighborhood among spatial objects
- A link can determine the polygon to its left and its right

Containment
- Information about inclusion of one spatial object within another spatial object
- What nodes and links and other polygons are within a polygon
Elements of Topological Relationship

Adjacency

Containment

Connectivity
Topological Map

- Explains the concept of topological relationships
- A map that contains explicit topological information on top of the geometric information expressed in coordinates (Masry and Lee, 1988)
- All spatial entities are decomposed and represented in the form of the three basic graphical elements (point, line, polygon)
Concept of a Topological Map

- A cartographic map
- Layers of topological map
- Associated tables
<table>
<thead>
<tr>
<th>Pt ID</th>
<th>X, Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15000,13450</td>
</tr>
</tbody>
</table>
- Point layer
- Line layer
- Polygon layer

- Associated tables
<table>
<thead>
<tr>
<th>Arc ID</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>d</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>7</td>
<td>b</td>
<td>d</td>
</tr>
</tbody>
</table>
- Associated tables
<table>
<thead>
<tr>
<th>Poly ID</th>
<th>Arcs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3, 4</td>
</tr>
</tbody>
</table>
- Associated tables
<table>
<thead>
<tr>
<th>Arc ID</th>
<th>Left Poly</th>
<th>Right Poly</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>World</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>World</td>
<td>C</td>
</tr>
</tbody>
</table>
Network Data Model

- A special type of topologic model
- Shows how lines connect with each other at nodes

Applications:
- Load analysis over an electric network
- Vehicle routing over a street network
- Pollution tracing over a river network
Use of Topological Relationship

Areas in GIS wherein topological relationships are applied are:

1. Data input and representation
2. Spatial search
3. Construction of complex spatial objects from basic graphical elements
4. Integrity checks in database creation
Creating a topologic geographic database is extremely time-consuming and error-prone

- Requires all graphical elements to be digitized and numbered in sequence
- Not practical for complex maps

Possible to adopt the spaghetti digitization for graphical data input and then later on let the computer refine and structure them using topological relationships
Data input and representation

(a) Original map

(b) Digitizing in an arbitrary sequence

(c) Applying topological checks to detect and remove digitizing errors

(d) Applying topological relationships to reconstruct polygons

<table>
<thead>
<tr>
<th>Poly ID</th>
<th>Arcs</th>
<th>L-poly</th>
<th>R-poly</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>a</td>
<td>001</td>
<td>002</td>
</tr>
<tr>
<td>002</td>
<td>b</td>
<td>001</td>
<td>004</td>
</tr>
<tr>
<td>003</td>
<td>c</td>
<td>001</td>
<td>003</td>
</tr>
<tr>
<td>004</td>
<td>d</td>
<td>003</td>
<td>004</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Spatial search

- GIS uses topological relationships to perform spatial searches efficiently.
- For example, the land parcels surrounding a particular parcel can be located immediately using adjacency information.
 - Polygons that share a common boundary with the parcel of interest are identified.
 - Their IDs are used to retrieve the descriptive data from the database.
Spatial search

(a) Parcel map

(b) Arc attribute table
Construction of complex spatial objects

- Complex objects are represented as complex polygons in a geographic database.

- Two types of complex polygons are:
 - Those containing one or more holes (or islands/enclaves) → constructed from vector lines using topological information.
 - Those made up of two or more polygons that are not physically connected → constructed using a common identifier.
Construction of complex spatial objects
Integrity checks

- Graphical data must be topologically cleaned before using them in GIS applications
 - Must not contain any topological errors
- During topology building, the computer detects topological errors and marks them immediately
- Operator can then decide what to do with the errors
Integrity checks

<table>
<thead>
<tr>
<th>Common Network Topological Errors</th>
<th>Common Polygon Topological Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating node</td>
<td>Weird polygon</td>
</tr>
<tr>
<td>Dangling arcs (not all dangling arcs are errors)</td>
<td>1</td>
</tr>
<tr>
<td>Floating arc</td>
<td>2</td>
</tr>
<tr>
<td>Overlapping arc</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sliver polygon</td>
</tr>
<tr>
<td></td>
<td>Missing label</td>
</tr>
<tr>
<td></td>
<td>Overlapping polygons</td>
</tr>
</tbody>
</table>
Triangulated Irregular Network (TIN) Data Model

- Creates and represents surfaces in GIS
- Surface is represented as contiguous, non-overlapping triangles
- Size of triangles may be adjusted to reflect the relief of the surface being modelled
 - Larger triangles for relatively flat terrain
 - Smaller triangles for rugged terrain
- Manages information about the nodes that comprise each triangle and the neighbors of each triangle
- Applications:
 - Volumetric calculations for road design
 - Drainage studies
 - Landslide studies
Triangulated Irregular Network (TIN) Data Model
Advantages of TIN Data Model

- Incorporates original sample points so the accuracy of the model can be checked.
- Efficient way of storing surface representations because the size of triangles can be varied according to the terrain.
- Data structure makes it easy to calculate elevation, slope, aspect, and line-of-sight between points.
Vector File Formats

- **GDF/DIME** (Geographic Base File/Dual Independent Map Encoding) – originally used for storing street maps
- **TIGER** (Topologically Integrated Geographic Encoding and Referencing System) – improvement for GDF/DIME
- **DLG** (Digital Line Graphs) – USGS topographic maps
- **AutoCAD DXF** (Data Exchange Format) – widely used as an export format in many GIS
- **IGDS** (Intergraph Design System) – widely used in mapping
- **ArcInfo Coverage** – stores vector graphical data using topological structure explicitly defining spatial relationships
- **ArcInfo E00** – export format of ArcInfo
- **Shapefiles** – format of ArcView GIS; defines geometry and attribute of geographically referenced objects using the main file, index file and database table
- **CGM** (Computer Graphics Metafile) – ISO standard for vector data format; widely used in PC-based computer graphics applications
- **Page Description Languages (PDL’s)**
Considerations in choosing between Raster and Vector

- source and type of data
- analytical procedures to be used
- intended use of data
Raster vs. Vector

Raster Data Model

Advantages:
- Simple data structure
- Easy to conceptualize space representation
- Easy data collection and processing
- Easy and efficient overlaying
- High spatial variability is efficiently represented
- Easier and efficient for surface modelling, wherein individual features are not that important
- Allows easy integration of image data (satellite, remotely-sensed, etc.)
- Pixel values can be modified individually or in a group by using a palette
- Simple for own programming
Raster vs. Vector

Raster Data Model

Disadvantages:

- Do not provide precise locational and area computation information due to grid cells
- Requires large storage capacity, based on size and number of colors
- No topological processing
- Limited attribute data handling
- Inefficient projection transformations
- Loss of information when using large cells
- “Blocky” appearance when image is viewed in detail
Raster vs. Vector

Vector Data Model

Advantages:
- Far more efficient in storage than grids → Compact data structure
- Provides precise locational information of points
- Can represent point, line, and area features very accurately, leading to more accurate measurements and map outputs
- Topological models enable many types of analysis
- Sophisticated attribute data handling
- Efficient for network analysis
- Efficient projection transformation
- Work well with pen and light-plotting devices and tablet digitizers
Vector Data Model

Disadvantages:
- Complex data structure
- Difficult overlay operations
- High spatial variability is inefficiently represented
- Not compatible with RS imagery
- Expensive data collection
- Not good at continuous coverages or plotters that fill areas
Representation of a line using raster and vector model

Raster representation

Vector representation
Thank you!